1. 程式人生 > >bzoj4517: [Sdoi2016]排列計數

bzoj4517: [Sdoi2016]排列計數

continue ont math inline ans tin n) turn long long

題目鏈接

bzoj4517: [Sdoi2016]排列計數

題解

組合數問題:
\(ans = C(n,m) * D(n-m)\) , \(D(x)\)表示元素為x個的序列的錯排數
對於\(D(x)\) 上錯排數遞推公式
\(D(x) = (x-1)* (D(x-1) + D(x-2))\)
考場上對與D(x) 打的容斥 真是naive

代碼

// T2
// ans = C_n^m * (A(n,n) - A(n,n-m-1) + A(n,n-m-2).....)
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
inline int read() { int x = 0,f = 1; char c = getchar (); while(c < '0' || c > '9') { if(c == '-') f = -1;c = getchar();} while(c <= '9' && c >= '0') x = x * 10 + c - '0' ,c = getchar(); return x * f; } const long long
mod = 1e9 + 7; const int maxn = 1000007; #define LL long long LL jc[maxn],f[maxn]; inline LL poow(LL a,int k = mod-2) { LL ret = a; for(k --;k;k >>= 1,a = a * a % mod) if(k & 1) ret = ret * a % mod; return ret; } inline LL inv(LL x) { return poow(x); } LL C (int n,int m) { return
(jc[n] * inv(jc[m] * jc[n - m] % mod) ) % mod; } /* LL get_num(int n) { // if(n == 1) return 1; LL ret = 0; for(int k,i = 2;i <= n;++ i) { if(i&1) k = -1;else k = 1; ret = ( ret + (k * (jc[n] *(inv(jc[i]) % mod) )%mod ) +mod ) %mod; } return ret; } */ int main() { //freopen("permutation.in","r",stdin); freopen("permutation.out","w",stdout); int T = read(); jc[0]=1; for(int i = 1;i <= 1000003;++ i) jc[i] = jc[i-1] * i % mod; //for(int i = 1;i <= 500003;++ i) f[1]=f[0]=1; for(int i = 1;i <= 1000003;++ i) f[i] = (i - 1) *( f[i-1] + f[i-2])%mod; for( int n,m; T --;) { n = read(),m = read(); LL Cnm = C(n,m); if(n == m) {puts("1");continue; } // printf("%lld\n",get_num(n-m)); printf("%lld\n",(Cnm * f[n - m] )%mod ); } return 0; }

bzoj4517: [Sdoi2016]排列計數