吳恩達《卷積神經網路》課程總結
Note
This is my personal summary after studying the course, convolutional neural networks, which belongs to Deep Learning Specialization. and the copyright belongs to deeplearning.ai.
My personal notes
My personal programming assignments
相關推薦
吳恩達卷積神經網路——深度卷積網路:例項探究
經典網路 LeNet5 隨著網路的加深,影象的高度和寬度在縮小,通道數量增加 池化後使用sigmoid函式 AlexNet 與LeNet相似,但大得多 使用ReLu函式 VGG-16 網路大,但結構並不複雜 影象縮小的比例和通道增加的比例是有規律的 64->
吳恩達卷積神經網路——卷積神經網路
計算機視覺 相關問題: 1)影象分類: 2)目標檢測: 3)影象風格遷移: 挑戰:資料輸入可能會非常大 輸入10001000的彩色影象,則需要輸入的資料量為100010003 =3M,這意味著特徵向量X的維度高達3M ,如果在第一隱藏層有1000個神經元,使用標準全連線,那麼權值矩
Deeplearning-吳恩達-卷積神經網路-第一週作業01-Convolution Networks(python)
Convolutional Neural Networks: Step by StepWelcome to Course 4's first assignment! In this assignment, you will implement convolutional (
【Coursera】吳恩達 deeplearning.ai 04.卷積神經網路 第二週 深度卷積神經網路 課程筆記
深度卷積神經網路 2.1 為什麼要進行例項化 實際上,在計算機視覺任務中表現良好的神經網路框架,往往也適用於其他任務。 2.2 經典網路 LeNet-5 AlexNet VGG LeNet-5 主要針對灰度影象 隨著神經網路的加深
吳恩達Coursera深度學習課程 deeplearning.ai (4-1) 卷積神經網路--課程筆記
本課主要講解了卷積神經網路的基礎知識,包括卷積層基礎(卷積核、Padding、Stride),卷積神經網路的基礎:卷積層、池化層、全連線層。 主要知識點 卷積核: 過濾器,各元素相乘再相加 nxn * fxf -> (n-f+1)x(n-f+1)
吳恩達 深度學習 神經網路與深度學習 神經網路基礎 課程作業
Part 1:Python Basics with Numpy (optional assignment) 1 - Building basic functions with numpy Numpy is the main package for scientific c
吳恩達機器學習 - 神經網路的反向傳播演算法 吳恩達機器學習 - 神經網路的反向傳播演算法
原 吳恩達機器學習 - 神經網路的反向傳播演算法 2018年06月21日 20:59:35 離殤灬孤狼 閱讀數:373
吳恩達機器學習 - 神經網路 吳恩達機器學習 - 神經網路
原 吳恩達機器學習 - 神經網路 2018年06月19日 21:27:17 離殤灬孤狼 閱讀數:97
吳恩達第一門-神經網路和深度學習第二週6-10學習筆記
神經網路和深度學習第二週6-10學習筆記 6.更多導數的例子 在本節中,為上一節的導數學習提供更多的例子。在上一節中,我們複習了線性函式的求導方法,其導數值在各點中是相等的。本節以y=a^2這一二次函式為例,介紹了導數值在各點處發生變化時的求導方法。求導大家都會,y=x ^3的導數是
吳恩達第一門-神經網路和深度學習第三週6-10學習筆記
吳恩達第一門-神經網路和深度學習第三週6-10學習筆記 3.6啟用函式 啟用函式 圖中給出了前面課程中所學到的利用神經網路計算輸出值的具體步驟。其中的 σ
吳恩達改善深層神經網路引數:超引數除錯、正則化以及優化——優化演算法
機器學習的應用是一個高度依賴經驗的過程,伴隨著大量的迭代過程,你需要訓練大量的模型才能找到合適的那個,優化演算法能夠幫助你快速訓練模型。 難點:機器學習沒有在大資料發揮最大的作用,我們可以利用巨大的資料集來訓練網路,但是在大資料下訓練網路速度很慢; 使用快速的優化演算法大大提高效率
吳恩達 改善深層神經網路:超引數除錯、正則化以及優化 第一週
吳恩達 改善深層神經網路:超引數除錯、正則化以及優化 課程筆記 第一週 深度學習裡面的實用層面 1.1 測試集/訓練集/開發集 原始的機器學習裡面訓練集,測試集和開發集一般按照6:2:2的比例來進行劃分。但是傳統的機器學習
卷積神經網路課程筆記-實際應用(第三、四周)
所插入的圖片仍然來源於吳恩達老師的課件。 第三週 目標檢測 1. 物件的分類與定位,在輸出層不僅輸出類別,還應輸出包含物體的邊界框(bx,by,bh,bw),從而達到定位的目的。注意網路的輸出(例如下圖的輸出就有是否為目標,邊界框的引數,以及是哪類的判斷)和損失函式的定義
Coursera-吳恩達-深度學習-神經網路和深度學習-week1-測驗
本文章內容: Coursera吳恩達深度學習課程,第一課神經網路和深度學習Neural Networks and Deep Learning, 第一週:深度學習引言(Introduction to Deep Learning) 部分的測驗,題目及答案截圖。 正確:ABC
吳恩達學習-深層神經網路
深度學習是指神經網路包含了很多層的隱層,比如說10層20層這樣,有些問題用淺層神經網路不能得到很好的優化,只能通過深層神經網路優化,這是因為深層神經網路有其獨特的優勢,下面我們就先介紹深層神經網路的優勢。 1.深層神經網路的優勢 1.深層神經網路的一大優勢就
Deeplearning.ai吳恩達筆記之神經網路和深度學習1
Introduction to Deep Learning What is a neural neural network? 當對於房價進行預測時,因為我們知道房子價格是不可能會有負數的,因此我們讓面積小於某個值時,價格始終為零。 其實對於以上這麼一個預測的模型就可以看
Deeplearning.ai吳恩達筆記之神經網路和深度學習3
Shallow Neural Network Neural Networks Overview 同樣,反向傳播過程也分成兩層。第一層是輸出層到隱藏層,第二層是隱藏層到輸入層。其細節部分我們之後再來討論。 Neural Network Representation
吳恩達《機器學習》課程總結(7)正則化
額外 分享 哪些 TP 回歸 分享圖片 表現 例子 兩個 7.1過擬合的問題 訓練集表現良好,測試集表現差。魯棒性差。以下是兩個例子(一個是回歸問題,一個是分類問題) 解決辦法: (1)丟棄一些不能幫助我們正確預測的特征。可以使用工選擇保留哪些特征,或者使用一些模型選擇
吳恩達《機器學習》課程總結(15)異常檢測
是否 5.6 問題 com 結果 平移 分享 出現問題 計算過程 15.1問題的動機 將正常的樣本繪制成圖表(假設可以),如下圖所示: 當新的測試樣本同樣繪制到圖標上,如果偏離中心越遠說明越可能不正常,使用某個可能性閾值,當低於正常可能性閾值時判斷其為異常,然後做進一步的
卷積神經網路大總結
大家都清楚神經網路在上個世紀七八十年代是著實火過一回的,尤其是後向傳播BP演算法出來之後,但90年代後被SVM之類搶了風頭,再後來大家更熟悉的是SVM、AdaBoost、隨機森林、GBDT、LR、FTRL這些概念。究其原因,主要是神經網路很難解決訓練的問題,比如梯度消