統計學三大分佈與正態分佈的關係
三大抽樣分佈:卡方分佈,F分佈,t分佈
這三個分佈都是基於正態分佈變形得到的,在實際中只能用來做假設檢驗。比如,已知樣本X都是服從正態分佈的樣本,而且方差未知,那麼,檢驗X的均值就會用到t分佈,其他的情況也類似
以X^2分佈為例子
x1,x2..xn都遵守N(0,1)的正態分佈,則
x1^2+x2^2+遵守X^2(n)分佈
相當於形成了一個新統計量Y=x1^2+x2^2+
是新的統計量!而t分佈,F分佈也都是新統計量的分佈,只不過他們都是正態總體中的抽樣x1,x2,x3組成的函式。
就好象你知道x,y獨立,且其分佈你也知道,讓你求x^2+y^2的分佈一個道理,只不過抽樣都是獨立同分布而已!
u檢驗,t檢驗,F檢驗,卡方檢驗,一元線性迴歸,多元性迴歸在一定條件下互相轉化!
[Paper] 統計學三大分佈與正態分佈的差異
相關推薦
統計學三大分佈與正態分佈的關係
三大抽樣分佈:卡方分佈,F分佈,t分佈 這三個分佈都是基於正態分佈變形得到的,在實際中只能用來做假設檢驗。比如,已知樣本X都是服從正態分佈的樣本,而且方差未知,那麼,檢驗X的均值就會用到t分佈,其他的情況也類似 以X^2分佈為例子 x1,x2..xn都遵守
Khan公開課 統計學學習筆記 五 正態分佈
正態分佈:二項分佈極好的近似X是隨機變數,E(X)是期望值。正態分佈(normal distribution)也稱為高斯分佈(Gaussian distribution),或者鐘形曲線(bell curve)。(x-μ)/σ也稱為z score(注意:z score是個通用的概念,包括非正態分佈)。因此正態分
Excel圖表—二項分佈和正態分佈的對應關係
問題:假定某二項分佈對應引數為n=500, p=0.4,試分析與該二項分佈具有相同均值和標準差的正態分佈於該二項分佈的漸進關係。 結論:在實驗次數較大時(n=500),二項分佈已經與正態分佈基本
均勻分佈差生正態分佈
文章目錄 中心極限定理 中心極限定理 中心極限定理是說,n只要越來越大,這n個數的樣本均值會趨近於正態分佈,並且這個正態分佈以u為均值,sigma^2/n為方差。 換句話說,假設我們與樣本
MATLAB實現由均勻分佈產生正態分佈和銳利分佈
xaxis=-10:0.1:10; miu=0; delta=1; N=1000000; u1=rand(1,N); u2=rand(1,N); y1=(-2*log(u1)).^0.5; y2=
幾大分佈:正態分佈、卡方分佈、t分佈、F分佈整理
一、正態分佈 正態分佈(Normal distribution)又名高斯分佈(Gaussiandistribution),若隨機變數X服從一個數學期望為μ、方差為σ^2的高斯分佈,記為N(μ,σ^2)。其概率密度函式為正態分佈的期望值μ決定了其位置,其標準差σ
概率演算法-均勻分佈產生正態分佈
大部分語言只能產生均勻分佈的隨機數。C語言用(double)rand()/RAND_MAX產生0到1之間均勻分佈的隨機數。那麼如何產生正態分佈的呢? 一般,一種概率分佈,如果其分佈函式為y=F(x),那麼,y的範圍是0~1,求其反函式G,然後產生0到1之間的隨
正態分佈(normal distribution)與偏態分佈(skewed distribution)
分享一下我老師大神的人工智慧教程!零基礎,通俗易懂!http://blog.csdn.net/jiangjunshow 也歡迎大家轉載本篇文章。分享知識,造福人民,實現我們中華民族偉大復興!  
正態分佈(Normal distribution)與高斯分佈(Gaussian distribution)
正態分佈(Normal distribution)又名高斯分佈(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的概率分佈,在統計學的許多方面有著重大的影響力。 若隨機變數X服從一個數學期望為μ、標準方差為σ2的高斯分佈,記為: X
【程式設計師眼中的統計學(7)】正態分佈的運用:正態之美
作者 白寧超 2015年10月15日18:30:07 摘要:程式設計師眼中的統計學系列是作者和團隊共同學習筆記的整理。首先提到統計學,很多人認為是經濟學或者數學的專利,與計算機並沒有交集。誠然在傳統學科中,其在以上學科發揮作用很大。然而隨著科學技術的發展和機器智慧的普及,統計學在機器智慧中的作用越來
統計學學習筆記:(五)正態分佈
正態分佈:二項分佈極好的近似 X是隨機變數,E(X)是期望值。正態分佈(normal distribution)也稱為高斯分佈(Gaussian distribution),或者鐘形曲線(bell curve)。 (x-μ)/σ也稱為z score(注意:z score是個通用的概念,包括非正態分佈)。因
【概率與統計】正態分佈(Normal Distribution)
連續型隨機變數最常用的分佈就是 正態分佈(normal distribution),也稱為高斯分佈(Gaussian distribution): N(x;μ,σ2)=12πσ2−−−−√exp(−12σ2(x−μ)2)N(x;μ,σ2)=12πσ2exp(−1
二維正態分佈的引數與概率密度圖形
用Microsoft Mathematics繪製二維正態分佈的概率密度圖形,引數可以互動地調整。 N(μ1, μ2; σ1, σ2, ρ) μ1 = 1, μ2 = 1, σ1 = 0.49, σ2 = 0.49, ρ = 0 μ1
R語言與資料模型(3)-正態分佈
> x<-c(11,22,34,53,12,45,55,37,43,23,9) > dnorm(x,mean=mean(x),sd=sd(x)) [1] 0.011476566 0.020361888 0.023388233 0.010303998 0.
一點一點重學統計學(二)——二項、泊松和正態分佈
貝努裡大數定律:當試驗在不變的條件下,重複次數無限大,抽樣群體某一個概率與理論概率的差值,必定小於一個任意小的正數,所以這兩者可以基本相等,也可以用線性模型來解釋,隨著抽樣的總數增加誤差的平均會越來越
正態分佈與中心極限定理
正態分佈 定義 正態分佈(英語:normal distribution)又名高斯分佈(英語:Gaussian distribution),是一個非常常見的連續概率分佈。正態分佈在統計學上十分重要,經常用在自然和社會科學來代表一個不明的隨機變數。 也就是說,正態分佈一種分佈形式,它實際上有很多表示
第八九章 正態分佈與超越正態
正態分佈 對於正態分佈,首先補充其理論知識,然後我們根據<深入淺出統計學>中的計算步驟,進行程式設計實現. 正態分佈(Normal distribution),也稱“常態分佈”,又名高斯分佈(Gaussian distribution),最早由A
概率論與數理統計——二元均勻和正態分佈
1、二元均勻分佈 若二元隨機變數 的概率密度在平面上的一個有界區域 D內是常數,而在其餘地方取值為零,稱(X,Y) 在上 D 服從均勻分佈。 設 其中A為區域D的面積。 2、二元正態分佈 3、隨機變數的獨立性 (1)獨立
泊松分佈 二項分佈 正態分佈之間的聯絡,與繪製高斯分佈圖
基礎知識 二項分佈有兩個引數,一個 n 表示試驗次數,一個 p 表示一次試驗成功概率。現在考慮一列二項分佈,其中試驗次數 n 無限增加,而 p 是 n 的函式。 1.如果 np 存在有限極限 λ,則這列二項分佈就趨於引數為 λ 的 泊松分佈。反之,如果 np 趨於
【學習筆記】統計學入門(4/7)——正態分佈
來源:http://study.163.com/course/courseMain.htm?courseId=1005232026 索引—— 基本概念 連續變數的統計描述 分類變數的統計描述 正態分佈 二項分佈 引數估計與可信區間 假設檢驗 四、正